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ABSTRACT: Remote sensing instruments are heavily used to provide observations for both the 
operational and research communities. These sensors do not provide direct observations of the 
desired atmospheric variables, but instead, retrieval algorithms are necessary to convert the indirect 
observations into the variable of interest. It is critical to be aware of the underlying assumptions 
made by many retrieval algorithms, including that the retrieval problem is often ill posed and that 
there are various sources of uncertainty that need to be treated properly. In short, the retrieval 
challenge is to invert a set of noisy observations to obtain estimates of atmospheric quantities. The 
problem is often complicated by imperfect forward models, by imperfect prior knowledge, and by 
the existence of nonunique solutions. Optimal estimation (OE) is a widely used physical retrieval 
method that combines measurements, prior information, and the corresponding uncertainties 
based on Bayes’s theorem to find an optimal solution for the atmospheric state. Furthermore, 
OE also allows the relative contributions of the different sources of error to the uncertainty in 
the final retrieved atmospheric state to be understood. Here, we provide a novel Python library 
to illustrate the use of OE for inverse problems in the atmospheric sciences. We introduce two 
example problems: how to retrieve drop size distribution parameters from radar observations 
and how to retrieve the temperature profile from ground-based microwave sensors. Using these 
examples, we discuss common pitfalls, how the various error sources impact the retrieval, and 
how the quality of the retrieval results can be quantified.
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S cience relies on observations to develop theories about nature, and to determine if those 
theories accurately approximate how nature works. A wide variety of in situ and remote 
sensing techniques are used to characterize, understand, and quantify properties and 

processes that occur in the atmosphere and the surface. Improving our understanding of these 
processes, and how they interact with each other and the environment is critically important 
for advancing numerical weather prediction and climate models.

In response to this recognized need, our field has seen an explosion in the number and 
diversity of remote sensing instrumentation. We are using advanced active remote sensors 
such as lidars, radars of various wavelengths, sodars, scintillometers, and global positioning 
systems. We are using passive remote sensors like infrared spectrometers, microwave radiom-
eters, and imaging radiometers that operate at wavelengths from the visible to the infrared, 
and beyond. All of these instruments are taking advantage of various physical laws, many 
embodied in the principles of radiative transfer, to gain new insights into the processes in 
the atmosphere.

There is a common thread that holds in most of these observations: we are not actually 
observing what we want to know. These instruments are measuring a change in voltage, 
the number of photons passing into a detector over a certain period, a Doppler shift in radar 
or lidar frequency, and the intensity of the backscattered energy. However, we are gener-
ally interested in very specific atmospheric variables, e.g., the ice water content at a certain 
altitude or within a certain volume, temperature and water vapor at distinct heights, or the 
aerosol and cloud droplet number concentration. Thus, we are left with the problem of ex-
tracting very specific information from the remote sensing observations that are typically 
only partially related to the variable of interest. In atmospheric sciences, we often call this 
inverse process a retrieval.

Very often, if we have a measurement that has some sensitivity to the atmospheric variable 
we desire, we can compute the signal that we would observe with our remote sensor using a 
so-called forward model, i.e., the forward process. In other words, if we knew the atmospheric 
state, which includes here all variables affecting the observed signal, we could reproduce 
the measurement. These forward models ideally are based upon first principles, so that we 
have a fair degree of confidence in their fidelity. However, they are often nonlinear, which 
makes them difficult if not impossible to invert analytically. Thus, the retrieval problem is 
essentially the development of an algorithm that is used to invert the forward model (F) so 
that we can derive the atmospheric variable that we desire (x; e.g., humidity, temperature, 
drop size distribution) from the observation that we have made from our remote sensor (y; 
e.g., brightness temperature, radar reflectivity).

Stephens (1994) provided a classic illustration for a retrieval. Suppose that you desire a 
description of a dragon but you observe only the footprints that the dragon makes in the sand. 
Now, if you already know the dragon, you can pretty easily describe the tracks it might make 
in the sand; i.e., you can develop a forward model. But if you observe only the tracks in the 
sand, it will be much more difficult to describe the dragon in any detail. You will likely be able 
to tell that it was a dragon and not a deer, but there will be aspects that you will be unable to 
characterize: the dragon’s color, if it has wings, etc. A retrieval can combine the observations 
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(large footprints) with prior information (most dragons have wings and the ones making large 
footprints are green) to get the most likely state (it was a green dragon with wings).

The retrieval process is complicated by many factors. First, there is the uniqueness prob-
lem. There is no guarantee that there is only a single x that maps to the observation y; it is 
quite possible that F(x) = F(x�) = y, where x ≠ x�. This could imply that there is a distribution 
of states around x that will map to y, but may also mean that there are several very different 
states mapping to y. Because of this, and because there are often more unknowns than there 
are measurements, inversion problems are more often than not ill posed. Second, there is no 
such thing as a perfect instrument implying that y has some noise component and can also 
be represented by a probability distribution. Third, there are still uncertainties within the 
models: either in the physics themselves (single-scattering properties, for instance) or in the 
ancillary input datasets that are needed to drive the model (along with the atmospheric vari-
able we desire) to simulate the observation. Thus, we have to invert a set of noisy observations 
using an imperfect forward model where multiple discrete descriptions of the atmospheric 
state could reproduce the measurements!

Often, a prior dataset (i.e., a climatology) of the atmospheric observations is used together 
with a forward model to simulate the observations that would be associated with each x. Using 
a prior constrains ill-posed problems where the most likely state is selected from the possible 
solutions based on prior information. The accuracy of a retrieval will depend strongly on the 
prior information the user has before taking the measurement (i.e., the prior dataset with mean 
xa and covariance matrix Sa) used in the construction of the retrieval relative to the particular 
case being retrieved. If the current case is well represented by the prior dataset (i.e., xtruth is 
“close” to xa), then the retrieval will likely be reasonably accurate, but if the current case is 
poorly represented in the prior dataset (i.e., xtruth is “far” from xa), then the accuracy of the 
retrieval will likely be poorer, especially if the forward model is nonlinear. This means that 
during retrieval development that the user must not only choose an adequate prior (e.g., using 
a tropical dataset as a prior for tropical measurements) but must also have a basic physical 
understanding about the variable the user wants to retrieve. However, the benefits of add-
ing information from the prior to the retrieval comes at a price and the retrieval can perform 
poorly when applied to very unlikely cases such as extreme events.

A wide range of techniques has been developed to perform retrievals (e.g., Twomey 1977; 
Tibshirani 1996; Rodgers 2000; Tarantola 2005; Stephens and Kummerow 2007; Aster et al. 2018), 
and many scientific disciplines use inversion theory as part of their normal activities. Retrieval 
algorithms generally fall into two distinct groups: “statistical” and “physical” retrievals1 (Kidder 
and Vonder Haar 1995). Statistical retrieval algorithms develop empirical relationships between 
the atmospheric variable x and the observation y using tech-
niques like linear, polynomial or lasso regression algorithms, 
empirical orthogonal functions, neural networks, and theoretical 
relationships between scattering, emission, and transmission 
with the atmospheric properties of interest (e.g., Nakajima and King 1990). These are essentially 
statistical inferences. While being computationally efficient, statistical retrievals can struggle 
when dealing with nonunique or nonlinear problems and including all uncertainty sources for 
estimating retrieval uncertainties can be challenging. In contrast, physical retrievals use and 
invert a forward model by an iterative process to converge to a solution considering the prior. 
By this, physical retrievals can deliver more insight into the nature of the inverse problem. This 
includes quantifying the information content of the measurement, but also consistency checks 
whether the measurement can be reproduced with the solution.

Physical retrievals exploit the idea, introduced earlier, that observations, forward models, 
and the assumptions necessary to drive them have inherent uncertainty and can be repre-
sented by probability distributions. These algorithms typically use the Bayes’s theorem:

1 For brevity, we omitted hybrid approaches 
combining both approaches.
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 P(x|y) = P(y|x)P(x)/P(y), (1)

which states how probable a certain x is given y [i.e., P(x|y)]. This probability density func-
tion is already the solution for the inverse problem, which means that the solution includes 
an uncertainty estimate. Bayes’s theorem tells us that it can be obtained by multiplying the 
probability of y given x [P(y|x); the likelihood] with the a priori probability density of the 
state P(x) (e.g., based on a climatology, a model forecast, or a measurement at some distance 
away in space or time). The probability P(y|x) represents the uncertainty in the measurement 
process and also in the model that converts the state x into observations y, while the division 
by P(y) is effectively a normalization factor.

The optimal estimation (OE) is a widely used physical retrieval method and the equations 
(Rodgers 2000) can be derived from Eq. (1) if one assumes all of the probabilities have a Gaussian 
distribution. OE also implicitly assumes that there is no bias in the measurements and prior 
dataset; in other words, the average of their uncertainties is zero. In this study, we illustrate 
the use and typical challenges of OE, which naturally combines the uncertainties in both the 
observations and the a priori information. A complete literature overview is beyond the scope 
of this study, but important applications include atmospheric profiling based on microwave 
or infrared radiometers (Turner and Löhnert 2014), cloud and precipitation properties (Löhnert 
et al. 2004; Mace et al. 2016) trace gas concentrations retrievals (Crisp et al. 2004; Wunch 
et al. 2011), and data assimilation for numerical weather prediction models (Bauer et al. 2006; 
Janisková 2015). Since retrieved data are utilized so heavily in our field and we continually 
develop more advanced instrumentation and algorithms, it is important that the retrieval 
uncertainties are accurately quantified and made available with the retrieved information.

To illustrate how OE works, we discuss two simplified retriev-
al applications: retrieving temperature and humidity profiles 
from a multichannel ground-based microwave radiometer and 
retrieving drop size distribution parameters from ground-based 
cloud radar observations. We use the recently published Python 
pyOptimalEstimation library2 and also provide the code to 
reproduce all results and figures in supplemental Jupyter note-
books that can be executed in a web browser3 without installing 
any software. We strongly encourage the reader to explore the 
behavior of the example retriev-
al applications with the Jupyter 
notebooks on their own. The 
library, the examples, and the 
extensive documentation form 
a toolset that allows the reader 
to develop their own retrieval 
algorithms.

How OE works
OE is trying to find an optimal 
solution xop given an observa-
tion and prior information us-
ing an iterative process (Fig. 1) 
where the prior is described by 
the mean xa and the covari-
ance matrix Sa. We start the it-
eration with a first guess for the 

2 v1.1, available at ht tps: //github.com/maahn 

/pyOptimalEstimation
3 Jupyter Notebooks are a web application for 

creating documents that contain live code, equa-
tions, and figures. The supplemental notebooks 
are available online (https://github.com/maahn 

/pyOptimalEstimation_examples) using Binder 
(Project Jupyter et al. 2018).

Fig. 1. Optimal estimation principle: The ellipses show the (left) prior state 
and (right) measurement uncertainty. The iterative process starts with 
applying the forward operator F to the first guess (here x0 = xa). Based 
on the difference of F(xa) to yobs (which is close to but not equal to an 
ideal measurement ytruth representing xtruth), x1 is obtained (which requires 
inverting F). This is repeated until the retrieval converges to a solution x3 
= xop that is close to the true state xtruth.
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atmospheric state x0. If available, measurements from another instrument, model results, or 
the retrieval results at an earlier sample time can be used for x0, but in the absence of other 
information we follow the common approach to use xa for x0. The forward operator F is used 
to transform xa from x to y space, resulting in F(xa). In the next step, the difference between 
F(xa) and yobs  is used to make the next guess x1 considering the distance from x1 to xa. This is 
done by weighting these differences by the measurement uncertainty covariance matrix Sy 
and, respectively, the prior state covariance matrix Sa. The fact that Sa and Sy are covariance 
matrices implies that the errors of xa and yobs  can be described with normal distributions. 
Obtaining x1 from xa and yobs  requires inverting F, which is typically not possible analytically. 
Therefore, the Jacobian matrix K = ∂y/∂x is used to linearize and invert F, which results in 
the requirement that F is moderately linear. This means that for OE to work, F must behave in 
approximately a linear manner for small perturbations used to obtain K. In atmospheric sci-
ence, most problems are moderately linear due to the propensity of exponentials and power 
laws used within them and the absence of discontinuities. Because K is only an approximation 
for F around x0, x1 obtained with this process is typically not the solution yet and the process 
must be repeated until x converges to a stable, optimal solution xop. Note that K depends on 
x used for estimating the Jacobian, which means that K must be recalculated for every itera-
tion step, which might be computationally expensive depending on the lengths of x and y.

Mathematically, the iterative process for iteration i + 1 can be summarized with

 x i+1 = xa + (Sa
–1 + K i

TSe
–1K i)–1 K i

TSe
–1[y – F(x i,b) + K i(x i – xa)], (2)

where Se is the effective measurement uncertainty. In fact, F depends not only on x i, but also 
on the parameter vector b, which includes additional input variables for the forward operator 
that are not retrieved by the algorithm and are considered fixed. For example, radiative transfer 
models used for microwave radiometers require not only temperature and humidity profiles 
(which compose typically x), but also a pressure profile. Additionally, there are almost always 
other fixed parameters in the forward model that encompass sources of uncertainty; e.g., for 
microwave radiometers, there are uncertainties in the line parameters that are used in the 
radiative transfer model (Cimini et al. 2018). Even though often ignored, the uncertainties of 
b can be also considered with the corresponding covariance matrix Sb� (in y space4),which is 
why Sy is replaced by the more general Se = Sy + Sb� in Eq. (2).

The iteration stops when the convergence criterion5

 (x i – x i+1)T Si
–1(x i – x i+1)  length(x) (3)

is fulfilled. Here, Si describes the uncertainty of the retrieved xi and can be obtained by com-
bining the uncertainties related to x and y space:

 Si = (Si
–1 + K i

TSe
–1K i)–1. (4)

Thus, the convergence criterion in Eq. (3) is really stating “the retrieval is considered con-
verged when the change in x is smaller than the derived uncertainty of x.” After convergence 
is reached at iteration i, xi and Si are assumed to be the optimal 
solution xop and uncertainty Sop. The fact that Sop can be easily 
obtained is an important advantage of OE and other physical 
retrieval methods in comparison to statistical retrievals where 
additional steps are required to estimate the uncertainties (e.g., 
Cadeddu et al. 2009).

Sources of retrieval uncertainty
Every retrieval algorithm suffers from the same fundamental 
sources of uncertainty related to the three covariance matrices 

4 The matrix Sb� in y space can be easily obtained 
from the covariance of the elements of b (call this 
Sb) and then computing the Jacobian of F with 
respect to b, denoted as Kb with Sb� = KbSbKb

T.
5 There is also a criterion to test for convergence in 

y space instead of x space [Rodgers 2000, their 
Eq. (5.33)], but we found that our sample retriev-
als obtain convergence faster in x space without 
any significant difference in the quality of the 
solution (see supplement A).

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/06/21 06:54 PM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y S E P T E M B E R  2 0 2 0 E1517

Sy, Sa, and Sy. To illustrate this, we designed a simplified retrieval (see supplement A) for 
atmospheric temperature and humidity profiles based on brightness temperature measure-
ments of a common ground-based microwave radiometer [humidity and temperature profiler 
(HATPRO); Rose et al. 2005].

Here, the prior temperature and humidity profiles consist of a 16-yr spring average (March–
May) of radiosonde observations at the U.S. Department of Energy Atmospheric Radiation 
Measurement (ARM) program at the North Slope of Alaska (NSA) site in Utqiaġvik (formerly 
known as Barrow), Alaska (Verlinde et al. 2016). As a forward operator, we use a fast and simple 
radiative transfer model that does not account for scattering by hydrometeors (Löhnert et al. 
2004). We do not use real radiometer observations but obtain a synthetic measurement based 
on a radiosonde and the forward operator. This has two main advantages: first, systematic 
forward model errors cancel each other out and—more importantly—we know the true atmo-
spheric state xtruth, which we can compare to the retrieval’s result xop. Therefore, we always 
recommend using synthetic observations during retrieval development before applying it to 
real observations. Standard values for the uncertainties in the observed microwave bright-
ness temperatures are used for the diagonal elements of Sy; other error sources are neglected 
in the beginning. We want to stress, however, that the retrieval accuracy can be significantly 
reduced when using real observations. This is associated to “real world” challenges such as 
biases in the measurements, the representatives of the prior data, or the quantification of 
forward model errors. An extensive discussion of OE retrievals based on real observations 
can be found, e.g., in Ebell et al. (2017) or Martinet et al. (2017).

Uncertainties related to the prior. The prior dataset serves as a tremendous constraint for 
the entire retrieval; in fact, the uncertainty in the retrieval must be smaller than the uncer-
tainty in the prior. Otherwise, the retrieval does not add any information from the observa-
tions. However, if we do not have a good measure of the variability and covariance of the true 
atmospheric state, then the retrieval could easily give a biased result. In some cases, the prior 
does not serve as a serious constraint because the information content in the observations is 
so high, such as retrieving liquid water path from a microwave radiometer (Turner et al. 2007). 
In other cases, it is difficult to derive the Sa matrix from existing observations (e.g., the vertical 
level-to-level covariance of liquid water content), and thus model simulations (Löhnert et al. 
2001) or educated guesses (Maahn et al. 2015) are used to provide this information to serve as 
a constraint in the retrieval. However, for retrieving temperature and humidity profiles from 
microwave radiometer (MWR) observations, the prior is critically important. In supplement 
A, we are trying to obtain 120 atmospheric quantities (60 height levels for each temperature 
and humidity from 0 to 22,500 m) from only 14 radiometer measurements, which makes the 
retrieval problem underconstrained. The discrepancy between the lengths of x and y under-
lines why a prior is required to get useful information out of the radiometer.6

Here, we modify the MWR retrieval to assess the impact of using a suboptimal Sa that is 
not consistent with the prior dataset. In the atmosphere, temperature and humidity are cor-
related to each other and to themselves at various height levels. This makes the nondiagonal 
elements of Sa crucial (Fig. 2): The retrieval considering nondiagonal elements (reference 
run) converges to a xop with a reasonable agreement to xtrue and a significant reduction of the 
uncertainties (Fig. 2a). If we assume that there are no level-to-level correlations in the prior 
(i.e., by setting nondiagonal elements to zero), the humidity solution stays close to the prior, 
the uncertainties are hardly reduced with respect to the prior, 
and there is even a nonphysical artifact in the humidity profile 
(Fig. 2b).

The result xop is also biased when a wrong prior dataset is 
used (Fig. 2c): When using summer radiosonde observations 

6 However, if we were trying to retrieve only 14 
atmospheric quantities, the prior would still be 
critical because passive radiometer measure-
ments are typically correlated.
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(June–August) to obtain xa and Sa, xtruth is mostly outside of the 1-sigma range of Sa. The result 
xop differs from xtruth mostly in the upper atmosphere (200–300 hPa) and close to the surface 
where xop bends to xa. But how can the reader detect such a situation for a real-world applica-
tion when xtruth is unknown? To identify issues with Sa, we strongly advise that the user apply 
statistical χ 2 tests (see supplement A) to test whether the retrieved measurement yop agrees 
with yobs  and whether yop, yobs , and xop are in agreement with the prior state considering the 
assumed uncertainties. These tests fail for the retrieval ignoring nondiagonal elements or 
using a wrong prior.

Uncertainties related to the forward operator. The second source of uncertainty is 
associated with the forward model. While forward models are usually built on first principle 
understanding, many approximations still exist either due to limitations in our understand-
ing of the physics or for computational efficiency reasons. The use of a 1D radiative transfer 
model instead of a 3D radiative transfer model is one example of an approximation that is 
frequently used, even though the 3D effects are important in most cloud scenes (e.g., Liang 
and Girolamo 2013). Furthermore, the inputs and assumptions needed by F often consist of 
more than just the elements of x that are represented by the parameter vector b and its cova-
riance matrix Sb. These so-called model parameters need to be known as their uncertainties 
also contribute to the uncertainty of F.

The forward model uncertainties are typically ignored in most current retrieval algorithms 
(i.e., Se = Sy) assuming that the forward model is perfect. However, for some cases, ignoring 
the uncertainties associated with b is the Achilles heel of the retrieval itself, which can result 
in a drastic underestimation of the error in the retrieved x (e.g., Mace et al. 2016). This can be 
also seen for our MWR retrieval. Because the uncertainties of our forward operator have not 
been specifically quantified yet, we rely on the results of Cimini et al. (2018), who analyzed 
the uncertainties in the gas spectroscopy used in our forward microwave radiative transfer 
model. They found significantly correlated errors for some channels, particularly around the 
oxygen line. When adding their Sb� (their Fig. 9) to our Se, the 
balance between Se and Sa shifts and more emphasis is put on 
Sa. This leads to larger uncertainties for xop so that the optimal 
to prior uncertainty ratio7 is increased by up to 11 percentage 
points (Fig. 3a).

This can also be seen as a reduction in the information 
content that is retrieved from the measurements that can be 
quantified using the degrees of freedom for signal d.8 These 

Fig. 2. True (green), prior (orange), and optimal (blue) profile for (left) temperature and (right) 
specific humidity. (a) The correct spring Sa (reference run) was used, (b) the nondiagonal entries 
of Sa were neglected (set to zero), and (c) the wrong Sa (summer instead of the correct spring) 
was used. The shading shows the uncertainties (1 sigma) related to the prior and optimal.

7 Defined as sqrt[diag(Sop)/diag(Sa)].
8 We obtain d from the averaging kernel A = 
I – SopSa

–1 (Turner et al. 2016). The elements of the 
diagonal of A show the degrees of freedom for 
a signal that can be obtained for the individual 
elements of x. We define d as the trace of A. In 
case diag(SopSa

–1)  0, d reaches the maximum 
value of length of x.
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describe the number of independent information 
pieces that can be obtained from the measure-
ment, given the prior state. For a retrieval where 
the observations have perfect information content, 
d would be equal to the number of measurements 
or state variables, whichever is smaller. The refer-
ence retrieval can retrieve a total of 4.67d (of a 
maximum value of length of y = 14) for the humid-
ity and temperature profiles combined. Also d can 
be separated by state variables (Fig. 3b), which 
shows that the highest information contents can 
be obtained for temperature close to the surface 
and for humidity around 500 hPa. By including the 
forward model uncertainty Sb� in the retrieval, the 
total d is reduced to 4.01, with the primary loss of 
information occurring in the middle atmosphere 
(Fig. 3b).

Uncertainties related to the measurement. 
The perhaps most obvious source of uncertainty 
in a retrieval is the uncertainty in the observations themselves. y is typically multidimen-
sional, i.e., there are observations from multiple channels from a single instrument, or 
multiple instruments used in the retrieval. There will be random uncorrelated errors for 
each particular element of y, as well as correlated errors between the different elements of 
y. This can be concisely specified in a covariance matrix Sy. Similar to Sa, making Sy larger 
(smaller) changes the weights in the retrieval and puts more (less) weight on the prior at the 
expense of the observations. In supplement A, we detail how quadrupling (i.e., doubling 
the measurement uncertainty deviation) Se reduces the retrieved d by 0.75 and leads to xop 
being closer to xa.

For many instruments, it is easier to estimate the uncorrelated error in each particular 
element of the observation. For example, the basic measurement of microwave radiometers 
is typically a voltage output by the receiver where the random uncertainty is related to the 
noise characteristics of the receiver. But errors can be also correlated among measurements, 
e.g., if multiple measurements are obtained by the same receiver subject to common amplifier 
elements. Determining this correlated error is typically much harder but can be done (Tobin 
et al. 2007; Maahn and Löhnert 2017; Turner and Blumberg 2019). In our MWR retrieval, we 
also neglected nondiagonal elements in Sy initially. To assess the impact, we included the 
nondiagonal elements to the Sy used in Se (not accounting for Sb). Both the random noise 
and the correlation of the random noise between the HATPRO frequencies have been deter-
mined by continuously measuring the brightness temperatures of a blackbody with a known 
temperature.

Even though the changes in retrieval uncertainty and the element-wise d are small in 
comparison to the reference run that assumed Sy to be diagonal, the resulting total d is in-
creased by 0.19. Therefore, accounting for nondiagonal elements is one of the few occasions 
where considering “additional” error sources leads to an enhancement instead of a decrease 
of retrieval quality because correlations between the different elements of y (i.e., the differ-
ent channels in the microwave radiometer) can reduce the effective noise of the instrument. 
Referring to Fig. 1, correlated uncertainties would result in smaller shaded areas around yobs 

compared to uncorrelated uncertainties having the same variances.

Fig. 3. (a) The ratio of the uncertainty in the optimal 
solution (i.e., the square root of the diagonal of Sop) to 
the uncertainty in the prior (i.e., the square root of the 
diagonal of Sa) and (b) individual degrees of freedom 
for signal. The statistics for temperature are in green 
and specific humidity are in red. The solid line is the 
reference run with Se = Sy and the dashed–dotted line 
is for the configuration where the forward operator 
uncertainty is added Se = Sy + Sb
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Impact of retrieval assumptions
So far, we have investigated error sources related to the individual components of OE. But 
what happens when the core assumptions about OE are violated? OE requires that the for-
ward operator be moderately linear9 (i.e., linear when perturbing x) and that the measure-
ment as well as the prior error can be described by normal (Gaussian) distributions. We 
have assumed that the long-term averaged radiosonde profile prior dataset represents the 
un-biased population truth. Thus, the distribution of prior data itself must follow a normal 
distribution.

We illustrate the importance of assuming normal distribu-
tions by introducing a second example (see supplement B for 
details) using radar reflectivity Ze and mean Doppler velocity 
Vd of a vertically pointing cloud radar to retrieve a raindrop 
size distribution (DSD). We parameterize the DSD using a 
scaling parameter Nw, the raindrop mass-spectrum mean 
diameter Dm and the normalized mass spectrum standard deviation σm� (Williams et al. 
2014). These three quantities form the state vector x while Ze and Vd are combined into the 
measurement vector y. The a priori information (xa and Sa) is obtained from the observa-
tions from three disdrometers deployed near Huntsville, Alabama, from December 2001 
to October 2011 (Williams et al. 2014). Because violating retrieval assumptions will likely 
impact the robustness of the retrieval, we analyze the retrieval for 100 randomly chosen 
profiles. Similar to the first example, we use synthetic observations yobs  derived with a 
radar simulator (Mech et al. 2020) that are not included in the prior.

One option to deal with nonnormally distributed prior data are to transform the data so 
that it follows a normal distribution more closely. In supplement B, we use quantile–quantile 
(QQ) plots to show that the prior x follows a normal distribution closer when applying a loga-
rithm to x. Note, this is a rather simple solution for making the distributions more normal; 
however, some retrieval problems require more complex transformations (e.g., Anscombe 
1973; Mason et al. 2017). When comparing the retrieval quality for linear and logarithmic x, a 
clear improvement in retrieval quality can be seen for the latter: the percentage of converged 
retrievals raises from 86% to 100%. This also applies to the number of profiles passing the 
statistical χ2 tests (see “Uncertainties related to the prior” section) and a linearity test that 
tests the assumption that the forward operator is moderately linear. Further, we show with 
another QQ plot in supplement B that the distribution of “real” retrieval errors of the optimal 
solution (xtruth − xop) is in better agreement with the estimated Sop when using a logarithmic x.

Another way to show the enhanced quality is to look into the distributions of the optimal 
to prior uncertainty ratio and the individual d for all profiles (Fig. 4). The clear reduction in 
spread when using the logarithm 
of the state variables is obvious in-
dicating that the retrieval produc-
es more consistent results that do 
not depend as much on the indi-
vidual profile. The median values 
of the optimal to prior uncertainty 
ratio distribution are lower for the 
linear state variables indicating 
that the linear retrieval version 
is in general underestimating re-
trieval uncertainties. At the same 
time, d can be greatly overesti-
mated for individual profiles.

9 If the uncertainties in either the observation 
space or the state space are highly non-Gaussian, 
then other techniques such as the Markov chain 
Monte Carlo (MCMC; Posselt et al. 2008) method 
should be used.

Fig. 4. Violin plots showing (a) the optimal to prior uncertainty ratio 
and (b) the individual d using the linear (blue) and logarithmic state 
variables (orange).
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Summary and concluding remarks
Most of the observations of the Earth–atmosphere system are from remote sensors (e.g., sat-
ellite observations, weather radar observations) that are used in a wide range of operational 
and research applications. For all of these sensors, atmospheric variables of interest are never 
directly observed but must be derived from the observations within an inversion algorithm, 
which often requires the use of prior constraints. The uncertainties in these retrieved quantities 
arise from three sources: the prior dataset used to either construct or constrain the retrieval 
(characterized by the covariance matrix Sa), the uncertainties in the forward model assump-
tions and input ancillary datasets used in the forward model (Sb), and the uncertainties in 
the observations themselves (Sy). Within the inversion algorithm, these uncertainties can be 
propagated to provide uncertainties in the retrieved atmospheric state xop given by the covari-
ance matrix Sop. In a series of examples, we have utilized the optimal estimation (OE) retrieval 
method to show the impact of how changes in these uncertainties result in changes in the 
retrieved state vector xop and Sop. We also show that non-Gaussian uncertainty distribution 
can lead to a degradation of the OE performance. Nonnormally distributed state variables 
should be normalized to avoid negative impacts on retrieval quality and robustness. Using 
forward operators that are grossly nonlinear (i.e., are not moderately nonlinear) will also lead 
to a decrease of accuracy.

The supplemental Jupyter Notebooks, which can be run online in a web browser,10 provide 
the complete code for all examples. We strongly encourage the readers to experiment with the 
examples by themselves. Together with the pyOptimalEstimation Python library,11 this gives 
the readers all information to get started with their own OE retrieval projects.

We contend that more work is needed to accurately characterize these three input covari-
ance matrices. Too often, our community assumes that the measurement covariance matrix 
Sy is diagonal and that there is no correlation between different 
measurements within the observational vector y. We challenge 
instrument developers to devise methods to test this assump-
tion, and for scientists that develop retrievals to include the 
results from these tests in their algorithms. However, it must be 
stressed that such a detailed error characterization may not lead to a retrieval improvement if 
other error sources such as measurement biases are not correctly determined and accounted 
for before the retrieval application.

The prior dataset is critical as a constraint for physical retrievals. Often, however, the data 
needed to build a well-characterized prior dataset are inadequate or simply unavailable. For 
example, there are very few observational datasets available that allow us to determine the 
level-to-level covariance of cloud microphysical properties, which is critical information that 
is needed for cloud property retrievals, and therefore the community is using other sources 
such as model simulations.

Also, we believe that the uncertainties and assumptions in the forward model parameters 
have been neglected for too long. Forward models may be fundamentally incorrect (e.g., 
applying 1D radiative transfer approaches to situations that are inherently 3D), or may have 
uncertainties in the model parameters that affect retrieval results. In some applications, the 
uncertainty in b can dominate the uncertainty in the retrieval. Characterizing the uncertain-
ties in F may require additional supporting data so that closure studies can be performed. 
Thus, a well-constructed set of field campaigns may be able to improve the characterization 
of both Sa and Sb simultaneously.

It is important to recognize that OE is just one tool, albeit a powerful one, that can be used 
to retrieve atmospheric information from remote sensing observations. If the limitations of 
OE make it inapplicable to a problem, other physical retrieval approaches such as the com-
putationally expensive Markov chain Monte Carlo method (Posselt and Mace 2014; Posselt 

10 https://github.com/maahn/pyOptimalEstimation 

_examples
11 https://github.com/maahn/pyOptimalEstimation
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et al. 2017) are more appropriate for highly non-Gaussian cases or where the forward model 
is highly nonlinear.

Last, even the best retrievals can be only as good as the underlying observations stressing 
the need for enhanced instruments that can constrain retrievals better; this could be achieved 
using new instrument concepts, improved designs, or smarter sensor synergies.
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